////IIIZERO-MAX # Servo Class Couplings # ZERO-MAX SERVO**CLASS®** COUPLINGS - For high performance servo motor and demanding motion control applications - High torsional stiffness for use in precision positioning applications - Eco-Friendly, adapted to RoHS Directive with no banned substances - · Low inertia for high speed reversing applications - Zero backlash and low hysteresis ensures repeatable precise positioning - Low bearing loads - Available in 11 sizes in single and double disc models - Double disc models provide highest misalignment capability - Operating temperature range is -22° to +212°F (-30° to +100°C) - Torque ratings range from 0.5 to 250Nm - Hubs and center members manufactured of aluminum alloy for strength, durability, and both are treated to prevent oxidation and to preserve appearance - Disc members are made of 304 stainless steel - · Couplings are precisely assembled using high strength, corrosion resistant fasteners - Integral clamp style hubs provide fast, easy mounting - RoHS compliant manufactured of RoHS compliant materials and contains no banned substances # SERVO**CLASS®** COUPLINGS FOR EVERY SERVO SYSTEM REQUIREMENT #### Today's servo motor applications are more demanding than ever. The precision positioning requirements and high reverse load characteristics of AC and DC servomotor applications necessitate a coupling design that specifically addresses the needs of these sophisticated systems. Low Inertia is a critical feature of a superior servo coupling. The inertia should be low so as not to add significantly to overall inertia of the servo system. The lower the inertia, the less energy required by the motor to move the system and therefore, higher acceleration is possible. Zero-Max ServoClass couplings are made from aluminum and therefore they have very low inertia. ### High torsional stiffness is an important quality of any high performance coupling. Low torsional stiffness couplings will reduce system performance and accuracy. The high torsional stiffness characteristic of the Zero-Max ServoClass coupling increases the system resonant frequency, exceeding the resonant operating frequency of most equipment. Misalignment capability of a coupling is also important in a **Zero Backlash** is another key requirement of a high performance servo coupling. A coupling may be considered zero backlash and still have a large amount of torsional windup. Zero backlash and high torsional stiffness allow the coupling to maintain the same angular relationship between the input and output shaft without lost motion. The Zero-Max ServoClass coupling is a zero backlash coupling and it exhibits a very low amount of windup. motion control system. Usually, the alignment of a well manufactured servo system will be very good. Over time and under high load conditions, this alignment may deteriorate. Another important benefit of a high misalignment capability is the low reaction loads on the bearings in the system. The Zero-Max ServoClass coupling utilizes a design that provides flexibility but does not sacrifice any of the torque capability or the torsional stiffness capability and therefore minimizes the reaction loads to the servo motor bearings. # SERVO*class*® *sc* series - For high performance servo motor and demanding motion control applications - High torsional stiffness for use in precision positioning applications - Eco-Friendly, adapted to RoHS Directive with no banned substances - Low inertia for high speed applications - Zero backlash and low hysteresis ensures repeatable precise positioning | Model | Operating
Torque | Maximum
RPM | Torsional
Stiffness | Axial
Stiffness | Misa | alignment Ca | pacity | Moment of Inertia | Weight | Style | |--------|---------------------|----------------|-------------------------|--------------------|-----------------|--------------|------------------|------------------------|-----------------|-------| | | | 111 101 | | | Parallel | Angular | Axial | | | | | | in.lb.
(Nm) | rpm | in.lb./deg.
(Nm/rad) | lb./in.
(N/mm) | inch
(mm) | degree | ± inch
± (mm) | lb.in.²
kgm²(x10-6) | oz.
(gm) | | | SC005R | 5.3
(0.6) | 10,000 | 39
(250) | 400
(70) | 0.002
(0.05) | 0.5 | 0.004
(0.10) | 0.0012
(0.37) | 0.35
(10) | С | | SC010R | 8.9
(1.0) | 10,000 | 108
(700) | 400
(70) | 0.004
(0.11) | 1 | 0.008
(0.20) | 0.0027
(0.80) | 0.53
(15) | С | | SC020R | 18
(2.0) | 10,000 | 286
(1,850) | 183
(32) | 0.006
(0.15) | 1 | 0.013
(0.33) | 0.012
(3.40) | 1.3
(35) | С | | SC025R | 35
(4.0) | 10,000 | 432
(2,800) | 171
(30) | 0.006
(0.16) | 1 | 0.015
(0.38) | 0.018
(5.26) | 1.4
(40) | С | | SC030R | 44 (5.0) | | | | | 1 | | 0.025
(7.33) | 1.9
(54) | Α | | | | 10,000 | 618
(4,000) | 183
(32) | 0.007
(0.18) | | 0.016
(0.4) | 0.032
(9.39) | 2.2 (60) | В | | | | | | | | | | 0.039
(11.5) | 2.4
(68) | С | | SC035R | 71
(8.0) | 10,000 | 1,390
(9,000) | 320
(56) | 0.009
(0.24) | 1 | 0.020
(0.5) | 0.092 (26.8) | 4.3
(122) | С | | | 89
(10) | 10,000 | | | , | | | 0.101
(29.5) | 4.3
(122) | Α | | SC040R | | | 1,545
(10,000) | 228
(40) | 0.009
(0.24) | 1 | 0.024
(0.6) | 0.123
(36.1) | 4.8
(136) | В | | | | | | | | | | 0.146
(42.6) | 5.3
(151) | С | | | | | | | | | | 0.331
(96.9) | 8.7
(246) | Α | | SC050R | 221
(25) | | 2,472
(16,000) | 137
(24) | 0.011
(0.28) | 1 | 0.031
(0.8) | 0.407
(118.9) | 9.7
(275) | В | | | | | | | | | | 0.483
(141.7) | 10.7
(304) | С | | | | | | | | | | 0.862
(252) | 15.5
(440) | Α | | SC060R | 531
(60) | 10,000 | 5,407
(35,000) | 218
(38) | 0.013
(0.34) | 1 | 0.035
(0.9) | 1.08
(315.7) | 17.6
(498) | В | | | (55) | | _ | (33) | | | - | 1.29
(377) | 19.5
(556) | С | | SC080R | 885
(100) | 10,000 | 10,813
(70,000) | 366
(64) | 0.02
(0.52) | 1 | 0.04
(1.10) | 3.54
(1,034) | 37.0
(1,051) | С | | SC090R | 1,593
(180) | 10,000 | 7,724
(50,000) | 308
(54) | 0.02
(0.52) | 1 | 0.05
(1.30) | 6.08
(1,776) | 48.4
(1,373) | С | | SC100R | 2,213
(250) | 10,000 | 9,268
(60,000) | 317
(55) | 0.02
(0.52) | 1 | 0.06
(1.48) | 9.26
(2,704) | 60.2
(1,707) | С | Moment of Inertia and Weight are measured with the maximum bore diameters Recommended tolerance of mounted shaft is h7 Style A Style B Style C If the shafts of the equipment are smaller than the ID of the flex element they may be extended into the interior of the coupling. The ends of the shafts must never touch each other. # SERVO**class® SC** Series | | | | | 1 | | | | 1 | | | | | | |--------|-------------------|----------------|---------------------|-------------------|------------------|----------------------------|-----------------------------------|---------------------------------------|--|-----------------|---------------------------------|------------------------|----------------------| | Model | Bores | | Outside
Diameter | Overall
Length | Hub
Length | Reduced
Hub
Diameter | Distance
Between
Shaft Ends | Inside
dia. of
the flex
disc | Clamp
Screw to
Bore (on
reduced hubs) | Clamp
Screw | Clamp
Screw to
End of Hub | Clamp
Screw
Size | Tightening
Torque | | | Min | Max | D | L | LB | N | DBSE | K | A1 | A2 | С | М | | | | Inch
(mm) Size | in. lb.
(Nm) | | SC005R | 0.118
(3) | 0.236
(6) | 0.63
(16) | 0.913
(23.2) | 0.309
(7.85) | - | 0.295
(7.5) | 0.256
(6.5) | _ | 0.189
(4.8) | 0.098
(2.5) | M2.0 | 3.5
(0.4) | | SC010R | 0.118
(3) | 0.315*
(8)* | 0.748
(19) | 1.02
(25.9) | 0.36
(9.15) | - | 0.299
(7.6) | 0.335
(8.5) | _ | 0.228
(5.8) | 0.124
(3.15) | M2.5* | 9*
(1)* | | SC020R | 0.157
(4) | 0.433
(11) | 1.024
(26.0) | 1.272
(32.3) | 0.423
(10.75) | - | 0.425
(10.8) | 0.417
(10.6) | - | 0.374
(9.5) | 0.130
(3.3) | M2.5 | 9
(1) | | SC025R | 0.197
(5) | 0.551
(14) | 1.142
(29.0) | 1.291
(32.8) | 0.423
(10.75) | - | 0.445
(11.3) | 0.571
(14.5) | _ | 0.433
(11.0) | 0.130
(3.3) | M2.5 | 9
(1) | | SC030R | 0.197**
(5)** | 0.630
(16) | 1.339
(34.0) | 1.488
(37.8) | 0.488
(12.4) | 0.850
(21.6) | 0.511
(13.0) | 0.571
(14.5) | 0.315
(8) | 0.492
(12.5) | 0.148
(3.75) | М3 | 13
(1.5) | | SC035R | 0.236
(6) | 0.709
(18) | 1.535
(39.0) | 1.890
(48) | 0.610
(15.5) | - | 0.669
(17.0) | 0.669
(17) | - | 0.551
(14) | 0.177
(4.5) | M4 | 30
(3.4) | | SC040R | 0.315**
(8)** | 0.866
(22) | 1.732
(44.0) | 1.890
(48) | 0.610
(15.5) | 1.165
(29.6) | 0.669
(17.0) | 0.768
(19.5) | 0.433
(11) | 0.669
(17) | 0.177
(4.5) | M4 | 30
(3.4) | | SC050R | 0.315**
(8)** | 1.181
(30) | 2.205
(56.0) | 2.354
(59.8) | 0.807
(20.5) | 1.496
(38) | 0.740
(18.8) | 1.024
(26) | 0.571
(14.5) | 0.866
(22) | 0.236
(6) | M5 | 62
(7) | | SC060R | 0.433**
(11)** | 1.378
(35) | 2.677
(68.0) | 2.886
(73.3) | 0.992
(25.2) | 1.811
(46) | 0.902
(22.9) | 1.220
(31) | 0.689
(17.5) | 1.043
(26.5) | 0.305
(7.75) | M6 | 124
(14) | | SC080R | 0.709
(18) | 1.57
(40) | 3.228
(82.0) | 3.858
(98) | 1.181
(30) | - | 1.496
(38.0) | 1.496
(38) | _ | 1.102
(28) | 0.354
(9) | M8 | 266
(30) | | SC090R | 0.984
(25) | 1.77
(45) | 3.622
(94.0) | 3.882
(98.6) | 1.181
(30) | - | 1.520
(38.6) | 1.654
(42) | _ | 1.339
(34) | 0.354
(9) | M8 | 266
(30) | | SC100R | 1.260
(32) | 1.77
(45) | 4.095
(104.0) | 4.000
(101.6) | 1.181
(30) | _ | 1.638
(41.6) | 1.890
(48) | _ | 1.535
(39) | 0.354
(9) | M8 | 266
(30) | ^{*}SC010 with a bore of 8mm or 0.3125" will have a M2 clamp screw and a tightening torque of 3.5 in lbs. or 0.4Nm | ** Reduc | ** Reduced Hub Dimensions | | | | | | | | | | | |----------|---------------------------|----------------|--|--|--|--|--|--|--|--|--| | Model | Min | Max | | | | | | | | | | | | Inch
(mm) | Inch
(mm) | | | | | | | | | | | SC030R | 0.1875
(5) | 0.375
(10) | | | | | | | | | | | SC040R | 0.315
(8) | 0.5625
(15) | | | | | | | | | | | SC050R | 0.315
(8) | 0.750
(19) | | | | | | | | | | | SC060R | 0.433
(11) | 0.9375
(24) | | | | | | | | | | # SERVO**class® SD** SERIES - For high performance servo motor and demanding motion control applications - High torsional stiffness for use in precision positioning applications - Eco-Friendly, adapted to RoHS Directive with no banned substances - Low inertia for high speed applications - · Zero backlash and low hysteresis ensures repeatable precise positioning | Model | Operating | Maximum | Torsional | Axial | Mis | alignment Ca | pacity | Moment | Weight | Style | |--------|----------------|---------|-------------------------|-------------------|-----------------|--------------|------------------|------------------------|-----------------|-------| | | Torque | RPM | Stiffness | Stiffness | Parallel | Angular | Axial | of Inertia | | | | | in.lb.
(Nm) | rpm | in.lb./deg.
(Nm/rad) | lb./in.
(N/mm) | inch
(mm) | degree | ± inch
± (mm) | lb.in.²
kgm²(x10-6) | oz.
(gm) | | | SD005R | 5.3
(0.6) | 10,000 | 77
(500) | 799
(140) | 0.001
(0.02) | 0.5 | 0.002
(0.05) | 0.0009
(0.26) | 0.25
(7) | С | | SD010R | 8.9
(1.0) | 10,000 | 216
(1,400) | 799
(140) | 0.001
(0.02) | 1 | 0.004
(0.10) | 0.0019
(0.58) | 0.39
(11) | С | | SD020R | 18
(2.0) | 10,000 | 572
(3,700) | 366
(64) | 0.001
(0.02) | 1 | 0.006
(0.15) | 0.008
(2.36) | 0.9
(25) | С | | SD025R | 35
(4.0) | 10,000 | 865
(5,600) | 343
(60) | 0.001
(0.02) | 1 | 0.007
(0.19) | 0.013
(3.67) | 1.0
(29) | С | | SD030R | 44
(5.0) | | | | | 1 | | 0.014
(4.00) | 1.2
(34) | А | | | | 10,000 | 1,236
(8,000) | 366
(64) | 0.001
(0.02) | | 0.008
(0.2) | 0.021
(6.06) | 1.4
(41) | В | | | | | | | | | | 0.028
(8.12) | 1.7
(49) | С | | SD035R | 71
(8.0) | 10,000 | 2,781
(18,000) | 640
(112) | 0.001
(0.02) | 1 | 0.010
(0.25) | 0.063
(18.4) | 3.0
(84) | С | | | 89
(10) | | 3,089
(20,000) | | 0.001
(0.02) | | | 0.056
(16.4) | 2.7
(77) | А | | SD040R | | | | 457
(80) | | 1 | 0.012
(0.3) | 0.078
(23.0) | 3.2
(90) | В | | | | | | | | | | 0.101
(29.5) | 3.7
(105) | С | | | | | | | | | | 0.188
(54.9) | 5.5
(156) | А | | SD050R | 221
(25) | 10,000 | 4,943
(32,000) | 274
(48) | 0.001
(0.02) | 1 | 0.016
(0.4) | 0.263
(77.1) | 6.5
(185) | В | | | | | | | | | | 0.339
(99.3) | 7.5
(214) | С | | | | | | | | | | 0.491
(144) | 9.8
(279) | А | | SD060R | 531
(60) | 10,000 | 10,813
(70,000) | 436
(76.4) | 0.001
(0.02) | 1 | 0.018
(0.45) | 0.704
(205) | 11.9
(337) | В | | | | | | | | | | 0.918
(268.6) | 14
(396) | С | | SD080R | 885
(100) | 10,000 | 21,626
(140,000) | 731
(128) | 0.001
(0.02) | 1 | 0.02
(0.55) | 2.43
(709.3) | 25.6
(727) | С | | SD090R | 1,593
(180) | 10,000 | 15,447
(100,000) | 616
(108) | 0.001
(0.02) | 1 | 0.03
(0.65) | 4.20
(1,227) | 33.8
(959) | С | | SD100R | 2,213
(250) | 10,000 | 18,535
(120,000) | 664
(111) | 0.001 (0.02) | 1 | 0.03
(0.74) | 6.36
(1,858) | 41.6
(1,181) | С | Moment of Inertia and Weight are measured with the maximum bore diameters If the shafts of the equipment are smaller than the ID of the flex element they may be extended into the interior of the coupling. The ends of the shafts must never touch each other. Style B Style C # SERVO**CLASS® SD** SERIES | Servo | Class S | Single | Disc D | ımensi | ons | | | | | | | | | | | |--------|-------------------|---------------|------------------|------------------|---------------------|-------------------|-----------------|----------------------------|-----------------------------------|---------------------------------------|--|--------------------------|--------------------------------|------------------------|----------------------| | Model | Bores | | Bores | | Outside
Diameter | Overall
Length | Hub
Length | Reduced
Hub
Diameter | Distance
Between
Shaft Ends | Inside
dia. of
the flex
disc | Clamp Bolt
to Bore (on
reduced hubs) | Clamp
Bolt to
Bore | Clamp Bolt
to End of
Hub | Clamp
Screw
Size | Tightening
Torque | | | Min | Max | D | L | LB | N | DBSE | K | A1 | A2 | С | М | | | | | | Inch
(mm) Size | in. lb.
(Nm) | | | | SD005R | 0.118
(3) | 0.236
(6) | 0.63
(16) | 0.657
(16.7) | 0.309
(7.85) | - | 0.039
(1.0) | 0.256
(6.5) | - | 0.189
(4.8) | 0.098
(2.5) | M2.0 | 3.5
(0.4) | | | | SD010R | 0.118
(3) | 0.315
(8) | 0.748
(19) | 0.762
(19.35) | 0.36
(9.15) | - | 0.041
(1.05) | 0.335
(8.5) | - | 0.228
(5.8) | 0.124
(3.15) | M2.5* | 9*
(1)* | | | | SD020R | 0.157
(4) | 0.433
(11) | 1.024
(26.0) | 0.911
(23.15) | 0.423
(10.75) | - | 0.065
(1.65) | 0.417
(10.6) | - | 0.374
(9.5) | 0.130
(3.3) | M2.5 | 9
(1) | | | | SD025R | 0.197
(5) | 0.551
(14) | 1.142
(29.0) | 0.921
(23.4) | 0.423
(10.75) | - | 0.075
(1.9) | 0.571
(14.5) | - | 0.433
(11.0) | 0.130
(3.3) | M2.5 | 9
(1) | | | | SD030R | 0.197**
(5)** | 0.630
(16) | 1.339
(34.0) | 1.075
(27.3) | 0.488
(12.4) | 0.850
(21.6) | 0.098
(2.5) | 0.571
(14.5) | 0.315
(8) | 0.492
(12.5) | 0.148
(3.75) | МЗ | 13
(1.5) | | | | SD035R | 0.236
(6) | 0.709
(18) | 1.535
(39.0) | 1.339
(34) | 0.610
(15.5) | - | 0.118
(3.0) | 0.669
(17) | - | 0.551
(14) | 0.177
(4.5) | M4 | 30
(3.4) | | | | SD040R | 0.315**
(8)** | 0.866
(22) | 1.732
(44.0) | 1.339
(34) | 0.610
(15.5) | 1.165
(29.6) | 0.118
(3.0) | 0.768
(19.5) | 0.433
(11) | 0.669
(17) | 0.177
(4.5) | M4 | 30
(3.4) | | | | SD050R | 0.315**
(8)** | 1.181
(30) | 2.205
(56.0) | 1.709
(43.4) | 0.807
(20.5) | 1.496
(38) | 0.094
(2.4) | 1.024
(26) | 0.571
(14.5) | 0.866
(22) | 0.236
(6) | M5 | 62
(7) | | | | SD060R | 0.433**
(11)** | 1.378
(35) | 2.677
(68.0) | 2.110
(53.6) | 0.992
(25.2) | 1.811
(46) | 0.126
(3.2) | 1.220
(31) | 0.689
(17.5) | 1.043
(26.5) | 0.305
(7.75) | M6 | 124
(14) | | | | SD080R | 0.709
(18) | 1.57
(40) | 3.228
(82.0) | 2.677
(68) | 1.181
(30) | - | 0.315
(8) | 1.496
(38) | - | 1.102
(28) | 0.354
(9) | M8 | 266
(30) | | | | SD090R | 0.984
(25) | 1.77
(45) | 3.622
(94.0) | 2.689
(68.3) | 1.181
(30) | - | 0.327
(8.3) | 1.654
(42) | - | 1.339
(34) | 0.354
(9) | M8 | 266
(30) | | | | SD100R | 1.260
(32) | 1.77
(45) | 4.095
(104.0) | 2.748
(69.8) | 1.181
(30) | - | 0.386
(9.8) | 1.890
(48) | - | 1.535
(39) | 0.354
(9) | M8 | 266
(30) | | | ^{*}SD010 with a bore of 8mm or 0.3125" will have a M2 clamp screw and a tightening torque of 3.5 in lbs. or 0.4Nm | ** Reduced Hub Dimensions | | | | | | | | | | | |---------------------------|---------------|----------------|--|--|--|--|--|--|--|--| | Model | Min | Max | | | | | | | | | | | Inch
(mm) | Inch
(mm) | | | | | | | | | | SD030R | 0.1875
(5) | 0.375
(10) | | | | | | | | | | SD040R | 0.3125
(8) | 0.5625
(15) | | | | | | | | | | SD050R | 0.315
(8) | 0.750
(19) | | | | | | | | | | SD060R | 0433
(11) | 0.9375
(24) | | | | | | | | | # SERVO**CLASS®** # The right coupling can add performance and longevity to your system! ## High Torsional Stiffness - Increased system accuracy - Enables high-speed operation - Improved system stability ## High Quality - High grade materials used throughout the coupling - Machined and assembled by highly skilled technicians with certified tooling ## Low radial stiffness - Improved bearing life - Reduce operating temperatures - Improved system accuracy # Ultra low weight design - Low inertia - High strength aluminum - Lower inertia than comparable bellows designs # Precision designed clamp hub - Positive shaft hub connection - Zero Backlash - Trouble free assembly # SERVO**CLASS®** # **Typical Hysteresis Curves** Typical "Zero Backlash" Jaw Type Coupling Phase - Phase Torsional Windup — Torque New Zero-Max Configurable 3D CAD Downloads. www.zero-max.com # SELECTING A SERVO**CLASS®** COUPLING # Feed Screw Systems #### 1. Oscillation phenomena of servomotors If the resonant frequency of the entire feed-screw system is under 400~500Hz, oscillation may occur depending on the gain adjustment of the servomotor. The problems can be avoided by raising the resonant frequency of the mechanical system or adjusting the tuning function (filter function) of the servomotor. Contact us for unclear points concerning oscillation phenomena of servomotors. ## 2. Resonance caused by stepping motors Resonance can occur within a certain speed range due to the pulsation frequency of the stepping motor and the natural frequency of the entire system. Resonance can be avoided by not operating near resonant speed, or by reviewing the resonant frequency in the design phase. Contact us for unclear points concerning resonance of stepping motors. # How to evaluate the resonant frequency of feed-screw system - 1. Select the coupling according to the normal operating torque and maximum torque of the servomotor/stepping motor. - 2. In the following feed-screw system, evaluate the entire resonant frequency: Nf from the torsional spring constant: K of the coupling and feed screw, the moment of inertia: J1 of the driving side and the moment of inertia: J2 of the driven side. $$Nf = \frac{1}{2\pi} \sqrt{K \left(\frac{1}{J1} + \frac{1}{J2} \right)}$$ Nf: Eigenfrequency of the entire feed-screw system [Hz] - K: Torsional spring constant of the coupling and feed screw [N·m/rad] - J1: Moment of inertia of the driving side - 12: Moment of inertia of the driven side ## Selection Procedure 1. Calculate torque Ta applied to the coupling based on the motor output P and coupling operating rotation speed n. $$Ta[N \cdot m] = 9550 \times \frac{P[kW]}{n[RPM]}$$ 2. Calculate corrected torque Td applied to the coupling after deciding the service factor K based on load conditions. $Td = Ta \times K$ In servomotor drive, multiply the service factor $K=1.2\sim1.5$ by the maximum torque of servomotor Ts. $Td = Ts \times (1.2 \sim 1.5)$ - 3. Select a coupling size with permissible torque Tn that becomes greater than the corrected torque Td. $Tn \ge Td$ - 4. Depending on the bore diameters, the coupling permissible torque may be limited. Refer to the "Specification" and "Standard bore diameter". - 5. Confirm if the required shaft diameter does not exceed the maximum bore diameter of the selected size. If our standard line of ServoClass coupling will not exactly fit your system needs, contact us for a custom design. - Custom bores - Ultra high speeds - Special finishes - Special Lengths - Designed for operation in special environments # SERVO**CLASS®** HOW TO ORDER # **Part Numbering Structure** ### Bore Size Chart | | | Model | | | | | | | | | | | | | |--------|-------|-------|---|---|-----|-----|-----|---|----|----|---|--------------------|-----|--| | Inch | mm | | | | | | | | | | | SD-090R
SC-090R | | | | 0.125 | 3 | | | | | | | | | | | | | | | 0.125 | 4 | • | • | • | | | | | | | | | | | | 0.1875 | 5 | • | • | • | 2.1 | 2.8 | | | | | | | | | | | 6 | • | • | • | • | 3.4 | 5 | | | | | | | | | 0.250 | 6.35 | | • | • | • | • | 5 | | | | | | | | | | 7 | | • | • | • | • | 6.6 | | | | | | | | | 0.3125 | 8 | | • | • | • | • | • | 9 | 18 | | | | | | | | 9 | | | • | • | • | • | • | 20 | | | | | | | 0.375 | 9.525 | | | • | • | • | • | • | 22 | | | | | | | | 10 | | | • | • | • | • | • | 22 | | | | | | | 0.4375 | 11 | | | 0 | • | • | • | • | • | 50 | | | | | | 0.500 | 12 | | | | • | • | • | • | • | 51 | | | | | | 0.5625 | 14 | | | | • | • | • | • | • | • | | | | | | 0.5025 | 15 | | | | | 0 | • | • | • | • | | | | | | 0.625 | 16 | | | | | 0 | • | • | • | • | | | | | | 0.023 | 17 | | | | | | 0 | • | • | • | | | | | | 0.6875 | 18 | | | | | | 0 | • | • | • | • | | | | | 0.750 | 19 | | | | | | | • | • | • | • | | | | | 0.8125 | 20 | | | | | | | 0 | • | • | • | | | | | 0.875 | 22 | | | | | | | 0 | • | • | • | | | | | 0.9375 | 24 | | | | | | | | • | • | • | | | | | 1.000 | 25 | | | | | | | | • | • | • | • | | | | 1.125 | 28 | | | | | | | | 0 | • | • | • | | | | 1.1875 | 30 | | | | | | | | 0 | • | • | • | | | | 1.250 | 32 | | | | | | | | | 0 | • | • | 226 | | | 1.375 | 35 | | | | | | | | | 0 | • | • | • | | | 1.500 | 38 | | | | | | | | | | 0 | • | • | | | 1.5625 | 40 | | | | | | | | | | 0 | • | • | | | 1.625 | 42 | | | | | | | | | | | 0 | • | | | 1.750 | 45 | | | | | | | | | | | 0 | • | | Note: The ullet symbol indicates that the clamping collar will transmit the full rated torque without a keyway. The \bigcirc symbol indicates that the clamping collar will transmit the full rated torque without a keyway, however, the shaft will not be able to pass though the center of the coupling due to the ID of the flex element. A number in the square indicates that the bore is available and the torque rating of the clamp hub is reduced to the value shown in [N-m]. A blank square indicates that the bore is not available for the selected coupling size. ## ServoClass® Couplings Designed for demanding servomotor applications. Zero backlash, high torsional stiffness coupling. Features flexible metal discs and keyless clamp-type mounting hubs. Couplings are RoHS compliant. #### ETP® Shaft Locking Connections Designed for quick, easy and accurate assembly of mounted shaft components. Both inch and metric bore connections are available from stock. #### CD® Couplings These high performance couplings out last bellows and steel disc design couplings. The unique design of the composite disc enables the CD® Couplings to withstand punishing applications and deliver high precision performance. ## Roh'lix® Linear Actuators Roh'Lix® Linear Actuators convert rotary motion into precise linear motion. Available in five models. Roh'Lix® actuators have thrust ratings from 5 to 200 lbs. All models feature built in overload protection. #### Schmidt® Offset Couplings Schmidt® Offset Couplings are designed to handle high amounts of parallel offset up to 17.00". Standard models with torque capacities up to 459,000 in-lbs. #### Adjustable Speed Drives Easy to install and maintenance free. Zero-Max Drives offer infinitely variable speeds from 0 rpm to 1/4 of input rpm. 5 models with torque ranges from 12 in-lbs to 200 in-lbs. ## Overload Safety Couplings Torq-Tender® Couplings provide reliable overload protection in any mechanical power transmission system. Torque ranges from 2 to 3000 in-lbs. #### Crown® Gear Drives Crown® Gear Drives are available with 1:1 and 2:1 ratios. High quality AGMA class 10 spiral bevel gears. Stainless steel shafts and aluminum housings are standard on all Crown® Gear Drives. #### Control-Flex® Couplings Control-Flex® Couplings are zero backlash couplings designed for encoder and instrumentation type applications. #### OHLA® Overhung Load Adapters OHLA® Overhung Load Adapters are designed to eliminate radial and axial loads from a hydraulic pump or motor. 11 models available for mounts from SAE A to SAE F. Warranty. Zero-Max, Inc. the manufacturer, warrants that for a period of 12 months from date of shipment it will repair, or at its option, replace any new apparatus which proves defective in material or workmanship, or which does not conform to applicable drawings and specifications approved by the manufacturer. All repairs and replacements shall be F.O.B. factory. All claims must be made in writing to the manufacturer. In no event and under no circumstances shall manufacturer be liable for (a) damages in shipment; (b) failures or damages due to misuse, abuse, improper installation or abnormal conditions of temperature, dirt, water or corrosives; (c) failures due to operation, intentional or otherwise, above rated capacities, and (d) non-authorized expenses for removal, inspection, transportation, repair or rework. Nor shall manufacturer ever be liable for consequential and incidental damages, or in any amount greater than the purchase price of the apparatus. Zero Max, Inc. reserves the right to discontinue models or to change specifications at any time without notice. No discontinuance or change shall create any liability on the part of Zero-Max, Inc. in respect to its products in the hands of customers or products on order not incorporating such changes even though delivered after any such change. This warranty is in LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING (BUT NOT LIMITED TO) ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THE TERMS OF THIS WARRANTY CONSTITUTE ALL BUYER'S OR USER'S SOLE AND EXCLUSIVE REMEDY, AND ARE IN LIEU OF ANY RIGHT TO RECOVER FOR NEGLIGENCE, BREACH OF WARRANTY, STRICT TORT LIABILITY OR UPON ANY OTHER THEORY. Any legal proceedings orising out of the sale or use of this apparatus must be commenced within 18 months of the date of purchase. CAUTION: Rotating equipment must be guarded. Also refer to OSHA specifications and recommendations. Zero-Max*, CD*, ETP*, ServoClass*, Torq-Tender*, Control-Flex**, Posi-Lok**, Roh'Lix**, Crown**, Schmid © Zero-Max 2013 Printed in U.S.A.